

[logarithmic functions]

- 1. The inverse of an exponential function is a _____
- 2. Sketch the graphs of $y = 2^x$ and $y = 3^{-x}$
- 3. Solve the following equations for *x*. Give exact solutions, not decimal approximations. Use the rules of logarithms where appropriate.
 - a. $\log_4 x = 3$
 - b. $\log_3 3^3 = x$
 - C. $\log_{\frac{1}{3}} 25 = x$
 - d. $\log_x 27 = \frac{3}{2}$
 - e. $8^3 = 5$
 - f. $\log_{10} \frac{1}{10} = x$
 - g. $\log_{10}(x+2) + \log_{10}(x-1) = 1$
 - h. $\log_2 x = \log_2 9 + \log_2 5$
- 4. Express $\frac{1}{3}[\log_5 3 + 2\log_5 x^2 \log_5 2]$ as a single logarithm.
- 5. Solve the following equation for x. Give your answer to 4 decimal places.

 $3^{\frac{x}{2}-4} = 7$

- 6. An isotope of sodium Na²⁴, has a half-life of 15 hours. Find the amount remaining from a 6 g sample after 8 hours. (Give the answer to the nearest tenth of a gram.)
- Mitch wants to invest \$2400 in bonds which bears an interest rate of 8.75% compounded semi-annually. How long will it take for Mitch to have at least \$3000.
- 8. A bacteria culture starts at a count of 4000 and 7.5 hours later there are 25 000. Calculate doubling period of this type of bacteria.

worksheets